Signal Refinement: Principal Component Analysis and Wavelet Transform of Visual Evoked Response
نویسندگان
چکیده
This study presents an analysis on Visual Evoked Potentials (VEPs) recorded mainly from the occipital area of the brain. Accumulation of segmented windows (time locked averaging), Coiflet wavelet decomposition with dyadic filter bank and Principle Component Analysis (PCA) of three stages were utilized in order to decompose the recorded VEPs signal, to improve the Signal to Noise Ratio (SNR) and to reveal statistical information. The results shown that the wavelet transformation offer a significant SNR improvement at around four times compared to PCA as long as the shape of the original signal is retained. These techniques show significant advantages of decomposing the EEG signals into its details frequency bands.
منابع مشابه
Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملM-band Wavelet and Cosine Transform Based Watermark Algorithm using Randomization and Principal Component Analysis
Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This research presents discrete M-band wavelet transform (DMWT) and cosine transform (DCT) based watermarking algorithm by incorporating the randomization and principal component analysis (PCA). The proposed algorithm is expected to ...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015